Math 245B Lecture 17 Notes

Daniel Raban

February 20, 2019

1 Weak^{*} Metrizability, Operator Topologies, and Complex Measures

Many thanks to Anthony Graves-Mccleary, who provided me with notes when I missed this lecture.

1.1 Metrizability of the closed unit ball in the weak^{*} topology

Let's be a bit more thorough with a point we went over last time.

Proposition 1.1. Let $(\mathcal{X}, \|\cdot\|)$ be separable. Then $\mathcal{T}_{weak^*}|_{B^*}$ is metrizable.

Proof. Let $(x_n)_n$ be a dense sequence in \mathcal{X} . In $\mathcal{T}_{\text{weak}^*}|_{B^*}$, a neighborhood base of $f \in B^*$ is sets of the form

$$\bigcap_{i=1}^{m} \{ g \in B^* : |g(x^{(i)}) - f(x^{(i)})| < \varepsilon \}$$

for some $x^{(1)}, \ldots, x^{(m)} \in \mathcal{X}$ and $\varepsilon > 0$. Consider \mathcal{T}' generated by such neighborhoods except only using $x^{(i)}$ from $\{x_1, x_2, \ldots\}$. Then $\mathcal{T}' \subseteq \mathcal{T}_{\text{weak}^*}|_{B^*}$.

Step 1: \mathcal{T} is metrizable: Let

$$\rho(f,g) = \max_{n \ge 1} (2^{-n} \min(|f(x_n) - g(x_n)|, 1)).$$

This is analogous to the construction of a metric on a weak topology.

Step 2: We know that $\mathcal{T}_{\text{weak}^*}|_{B^*}$ is the weakest topology on B^* that makes $\hat{x} = (f \mapsto f(x))$ continuous for each $x \in \mathcal{X}$. To finish, show that \mathcal{T}' has this property; i.e. \hat{x} is \mathcal{T}' continuous. Suppose $x \in \mathcal{X}$. There exists a sequence (x_{n_i}) in the countable dense set such that $x_{n_i} \to x$ in norm. As a result, if $f \in B^*$, then

$$|\hat{x}(f) - \hat{x_{n_i}}(f)| = |f(x) - f(x_{n_i})| \le ||f|| \cdot ||x - x_{n_i}|| \le ||x - x_{n_i}||$$

which goes to 0 independently of f. So $\hat{x}_{n_i} \to \hat{x}$ uniformly on B^* . Thus, \hat{x} is a uniform limit of \mathcal{T}' -continuous functions, so \hat{x} is \mathcal{T}' -continuous.

Remark 1.1. The weak^{*} topology is almost never metrizable for all of \mathcal{X}^* .

1.2 The strong and weak operator topologies

Let \mathcal{X}, \mathcal{Y} be Banach spaces.

Definition 1.1. The strong operator topology on $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is the topology generated by the linear operators $T \mapsto Tx$ for $x \in \mathcal{X}$; i.e. this is the weak generated by the seminorms $T \mapsto ||Tx||$.

 $T_n \to T$ in the strong operator topology if and only if $T_n x \to T x$ in norm for all $x \in \mathcal{X}$.

Definition 1.2. The weak operator topology on $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is the topology generated by the linear operators $T \mapsto \varphi(Tx)$ for $x \in \mathcal{X}$ and $\varphi \in \mathcal{Y}^*$; i.e. this is the weak topology generated by the seminorms $T \mapsto \|\varphi(Tx)\|$.

 $T_n \to T$ in the weak operator topology if and only if $T_n x \to T x$ weakly in \mathcal{Y} for all $x \in \mathcal{X}$.

1.3 Signed measures, complex measures and the Lebesgue-Radon-Nikodym theorem

Recall the concept of signed measures. A signed measure ν cannot hit both $+\infty, -\infty$, and signed measures are related to two decompositions:

- 1. Hahn decomposition: $X = P \cup N$, where $\nu(A) \ge 0$ for all measurable $A \subseteq P$, and $\nu(B) \le 0$ for all measurable $B \subseteq N$.
- 2. Jordan decomposition: $\nu = \nu^+ \nu^-$, where ν^+ and ν^- are positive measures.

We write $|\nu| = \nu^+ + \nu^-$, and integration with respect to ν is $\int f d\nu = \int f dm u^+ - \int f d\nu^$ for $f \in L^1(|\nu|)$.

Theorem 1.1 (Lebesgue-Radon-Nikodym). Let μ, ν be σ -finite positive and signed measures, respectively. Then there exists a unique decomposition $\nu = \lambda + \rho$ such that $\lambda \perp \mu$ and $\rho \ll \mu$. The Radon-Nikodym derivative, the function f such that $d\rho = f d\mu$, is unique μ -a.e.

Definition 1.3. A complex measure on (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to \mathbb{C}$ such that

- 1. $\nu(\emptyset) = 0$,
- 2. For (E_n) disjoint in \mathcal{M} , $\nu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \nu(E_n)$, where the sum converges absolutely.

Here, we can write $\nu = \operatorname{Re}(\nu) + i \operatorname{Im}(\nu) = \nu_r + i\nu_i$, where ν_r, ν_i must be finite signed measures.

Definition 1.4. Integration with respect to a complex measure ν is given by

$$\int f \, d\nu = \int f \, d\nu_r + i \int f \, d\nu_i$$

for $f \in L^1(|\nu_r| + |\nu_i|)$.

Theorem 1.2 (Lebesgue-Radon-Nikodym for complex measures). Let μ, ν be σ -finite positive and signed measures, respectively. Then there exists a unique decomposition $\nu = \lambda + \rho$ such that $\lambda \perp \mu$ (i.e. $\lambda_r^{\pm}, \lambda_i^{\pm}$ all $\perp \mu$), $\rho \ll \mu$ (i.e. $\rho_r^{\pm}, \rho_i^{\pm}$ all $\ll \mu$), and the Radon-Nikodym derivative, $d\rho = f d\mu$ for some $f \in L^1_{\mathbb{C}}(\mu)$.

1.4 Total variation of complex measures

If ν is a complex measure, then $\nu \ll |\nu_r| + |\nu_i|$. Now suppose $\nu \ll \mu$, where μ is σ -finite and positive. By Radon-Nikodym, $d\nu = f d\mu$ for some $f \in L^1_{\mathbb{C}}(\mu)$. We want to define $d|\nu| = |f| d\mu$.

Lemma 1.1. If $f_1 d\mu_1 = f_2 d\mu_2$, then $|f_1| d\mu_1 = |f_2| d\mu_2$ (so $d|\nu|$ is well defined).

Proof. For $i = 1, 2, \mu_i \ll \mu = \mu_1 + \mu_2$, so $d\mu_i = g_i d\mu$, where $g_i \ge 0$. Then $f_1 g_1 d\mu = f_2 g_2 d\mu$. So $f_1 g_2 = f_2 g_2 \mu$ -a.e., which gives $|f_1|g_1 = |f_1 g_1| = |f_2 g_2| = |f_2|g_2 \mu$ -a.e. So

$$|f_1| d\mu_1 = |f_1| g_1 d\mu = |f_2| g_2 d\mu = |f_2| d\mu_2.$$

Proposition 1.2. Let ν be a complex measure. The total variation, $|\nu|$ has the following properties:

- 1. $|\nu(E)| \leq |\nu|(E)$ for all $E \in \mathcal{M}$.
- 2. $\nu \ll |\nu|$, and $|\frac{d\nu}{d|\nu|}| = 1 |\nu|$ -a.e.
- 3. $L^{1}(\nu) = L^{1}(|\nu|)$, and if $f \in L^{1}_{\mathbb{C}}(\nu)$, then $|\int f d\nu| \leq \int |f| d|\nu|$.

Proposition 1.3. *If* ν_1, ν_2 *are complex measures, then* $|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$ *.*